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{ “~In this paper we-pose and answer two questions about solutions of the linear complementar-
T ity problem (LCP). The first question is concerned with the conditions on a square matrix
‘;’ M which guarantee that for every vector g, the solutions of LCP (g, M) are identical to the
& Karush-Kuhn-Tucker pomﬁs of the natural quadratic program associated with (¢, M). In
V answering this question we mtroduce the class of “row sufficient” matrices. The transpose
¢ of such a matm; Is what we-call “Column sufficient.” The latter matrices turn out to furnish
R the answer to eur second question which asks for the conditions on M under whxch_the _
!'; solution set of (g, M) is convex for every . In addition to these two main results, we diseuss
::q, the connections of these two new matrix classes with other well-known matrix classes in
9::. linear complementarity theory. .
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" SUFFICIENT MATRICES AND THE
h LINEAR COMPLEMENTARITY PROBLEM
o,
!
\ by R.W. COTTLE!, J.-S. PANG?, and V. VENKATESWARAN?3
i
B
;
o 1. Introduction.
s The present investigation belongs to a long-standing tradition in the study of the linear
1) complementarity problem (g, M):
%’ g+ Mz >0
. z20
I 2Y(g+ Mz)=0.
;\‘
A feasible linear complementarity problem (g, M) is one for which
Ly
3 F(gM)={z:9q+Mz>0,2>0} #0.
. L]
:' Naturally, F(q, M) is called the feasible set of (¢, M). The problem (q, M) is solvable if
.I
; S(e,M)={z:2€ F(¢, M), zT(¢+ Mz)=0,} #0.
b
; : In this paper, we introduce a class of matrices (called “row sufficient” matrices) which
é characterizes a certain property of the linear complementarity problem. We say that a
“ matrix is “column sufficient” if its transpose is row sufficient, thereby obtaining a second
:: class of matrices. We demonstrate that the class of column sufficient matrices characterizes
.:E another interesting property of the same problem. In addition to these two main results,
"‘ we discuss the connections of these two new matrix classes with other well-known matrix
) classes in linear complementarity theory.

Matrix classes have always played a prominent role of the theory of the linear comple-
mentarity problem (LCP). Indeed, even before the LCP had been given a name, Samelson,

» ! Department of Operations Research, Stanford University, Stanford, CA 94305
d 2Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, MD 21218
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Thrall and Wesler [23] showed that for fixed M € R"*", the LCP (¢, M) has a unique
solution for every ¢ € R™ if and only if M belongs the class P of matrices with positive
principal minors. This theorem is one of several wherein an interesting property of the
linear complementarity problem actually characterizes a class of matrices. Of course, by
virtue of the equivalence, the characterization goes both ways.

Our point of departure for this study is an analytic (as opposed to constructive) proof
technique that has been used by several authors for demonstrating the existence of a so-
lution to a feasible linear complementarity problem. This technique does not work in all
cases, but it does for linear complementarity problems involving positive semi-definite ma-
trices (3] among others [5]. This raises a question: What is the scope of the technique, i.e.,
the class of all matrices for which it works? Qur characterization result (Theorem 4) shows
that this class consists precisely of the row sufficient matrices.

An extension of the existence result (3] is due to Adler and Gale [1] who show that a
feasible LCP (g, M) with a positive semi-definite matrix M has a nonempty convex poly-
hedral solution set. This raises a second question: What kinds of linear complementarity
problems have convex solution sets? We give more than one characterization in answer to
this question. Interestingly enough, one such characterization is intimately related to the
answer to the first question. (See Theorem 6.)

2. The Associated Quadratic Program.

There is a close and much-noted connection between the LCP (¢, M) and the quadratic
program
minimize ¢(z) = ¢Tz + 2TM 2
subject to g+Mz20 (1)
z2>0.
The feasible set of (1) is precisely F(q, M). In order to compensate for the fact that M

may be asymmetric, it is customary to use the equivalent representation of the objective
function:

#(z) = ¢z + LT (M + MT)z. (2)

It is clear that for any M € R**" and ¢ € R™, any solution of (g, M) is an optimal solution
of (1). However, the converse of this observation is not valid unless the optimal objective
function value of (1) happens to be 0. Part of this paper will characterize certain instances
when any Karush-Kuhn-Tucker point of (1) will be a solution of the LCP (g, M).

The following lemma is extracted from the proofs of several earlier existence theorems.
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(Cf. (3], [4], [5]).) 1t is included here because of its strong motivating influence.

Lemma 1. Let (¢, M) be a feasible LCP. Then, the quadratic program (1) has an optimal

solution, z*. Moreover, there exists a vector u* of multipliers satisfying the conditions

g+ (M+MDz" - MM 20 (3)
(2")T[g + (M + M")z" - M™u*] =0 (4)
u" >0 (5)
(u") (g + Mz")=0. (6)
Finally, che vectors z* and u* satisfy
(z* —u")i[MY(z* —u"); <0 foralli=1,...,n. (7)

Proof. Since (g, M) is feasible, so is the quadratic program (1). As the objective function
of the quadratic program is bounded below on the feasible region, it follows from the Frank-
Wolfe Theorem [9] that there exists an optimal solution to (1). Such an optimal solution
z*, together with a suitable vector u* of multipliers will satisfy the Karush-Kuhn-Tucker
conditions (3) ~ (6). (See [17].) To prove (7), we examine the inner product (4) at the
componentwise level and deduce that foralli=1,...,n

2 [MYz" =) <0 (8)

using the fact that z* is feasible. Similarly, multiplying the i-th component in (3) by u;
and then invoking the complementarity condition u(g + Mz*), = 0 which is implied by
(5), (6), and the feasibility of z*, we obtain

—ul MY - u)} £0. (9
Now, (7) follows by adding (8) and (9). R

Remark. Conditions (3)-(9) are satisfied by any local minimum for (1) and corresponding
vector of Lagrange multipliers. It is not necessary to assume that z* is a global minimum
for (1). As we shall see below, the stronger conclusion of global optimality may also be
inferred under some circumstances.

3. Sign Reversing.

From the standpoint of this paper, the most important conclusion of Lemma 1 is em-
bodied in the system of inequalities (7) which say that M7 “reverses the sign” of z* — u".
Credit for this terminology is due to Gale and Nikaido [13] who define concept as follows.
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Definition. The matrix M € R"*" reverses the sign of the vector z € R" if r;(Mz); <0
foralli=1,...,n.

* "ol

It helps the discussion somewhat to consider the set, rev M, of all vectors whose sign is
reversed by a given matrix M € R"*":

- Poulelalf el

revM = {z:2,(Mz);<0,i=1,...n}.

Note that for all M € R™*" rev M contains the zero vector. In general, rev M is a cone

Iy
PP W o «

(not necessarily convex) containing ker M, the kernel (nullspace) of M. The conditions
under which rev M and ker M are equal can be characterized through the notion of column
‘ adequacy (defined below). A special result of this kind can be found in the 1962 paper [10]
; by Fiedler and Ptak who gave several equivalent conditions for a matrix M to belong to
& P. One pair of them (namely, 1° and 2° in their Theorem (3,3)) amounts to saying that

M eP ifandonly revM = {0}.

Several discussions in this paper concern submatrices and subvectors. Since such objects
are described in terms of rows and/or columns of specific matrices and vectors, this requires
the use of notation pertaining to index sets. Relative to the positive integer n, an index

set a is either a subset of {1,...,n} of the form {i;,...,t;} where 1 <7, <--- <, <n

- o as e m
- AL N

or else the empty set. If @ C {1,...,n} is an index set, then & is the {complementary)
index set obtained by taking the elements of the set {1,...,n}\ a in their natural order.
- For a given matrix M and index set a, the matrix M,, (M,,) denotes the submatrix of M
. consisting of the rows (columns) indexed by . When M € R™*", its principal submatrices
can be expressed as M,, where a C {1,...,n}.

b e

Definition. Let M € R™*" be a matrix with nonnegative principal minors.* Then M is

(1) row adequate if for all a C {1,...,n}

det M,, = 0 < the rows of M, are linearly dependent,

(ii) column adequate if for all a C {1,...,n}

- e . .. -

det M,, = 0 <= the columns of M,. are linearly dependent,

(i) adequate if it is row and column adequate.

“The class of real square matrices whose principal minors are all nonnegative is denoted Po.
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'_: The class of adequate matrices was introduced by Ingleton [14] to capture some of the
~ properties of positive semi-definite matrices vis-a-vis the LCP. In [15], Ingleton identified

;:’ the three matrix classes described in the preceding definition. The concept of row adequacy
o also appeared in the work of Eaves [8], [9]. It is obvious that every P-matrix is adequate.
p ,':‘: Ingleton [15, 1.2.3] noted the converse: every nonsingular adequate matrix belongs to P.
.‘ ' The proof of this given in {5, Lemma 3] can be modified to show the following very slight
.";: generalization.
»Y Lemma 2. Let M € R™*" be nonsingular. Then M is row (column) adequate if and only
e, fMcP. R
A For ease of reference and as motivation for our new results, we state the following known
\; theorem in detail.
:: »
"f:r Theorem 3. Let M € R**". Then
(4 (a) M is row adequate if and only if
iy
"w
O (M%), <O0foralli=1,....n => MTz=0.
N
{ (b) M is column adequate if and only if
W
v
7 ri{Mz);<0foralli=1,....n = Mz=0.
%
..f
) Proof. Part (a) was proved by Eaves (8], [9, Lemma (20), p.622]. Part (b) follows from
-“§ part (a). B
W
’:3 There is a more elegant way to state Theorem 3. The matrix M € R"*" is
}
o
° (a) row adequate if and only if rev MT = kerMT
e
L)
Y
oy (b) column adequate if and only if rev M = kerM.
)
W
X These characterizations of (row and column) adequacy inspire the more general notion of
)
®. (row and column) sufficiency. Before giving the definition, we define a special mapping.
)
::: Definition. For M € R**", let hys : R* — R" be the mapping z — z* Mz, the Hadamard
:::': product of z and Mz. Thus, for every z € R", hp(z) is the n-vector (z{(Mz),).
>
J\
[ Note that for any M € R™*",
K
. revM = {z:hy(z) <0}
e
150 o
'Y
=
e
e
R L N Y NNy Y
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To facilitate the language, we let rev hyy = rev M and then put
ker hpyy = {z: hy(z) =0}

The relation ker hyy C rev hy is automatic. When the reverse inclusion holds for the
M and/or M7, we get the notions of sufficiency.

Definition. The matrix M € R**" is

(1) row sufficient if

ti{(M™);<0foralli=1,....n = x;(MTx).-=0foralli=1,...,n, (10)

(1) column sufficient if

ri(Mz); <Oforalli=1,...,n = zi(Mz);=0foralli=1,...,n, (11)

(i11) sufficient if it is row and column sufficient.

Alternatively, we can say that M € R"*" is
(a) row sufficient if rev hpsr = ker hyyr,
(b) column sufficient if rev hyy = ker hpy.
Row sufficient matrices and column sufficient matrices must belong to the class P,.
This follows from the Fiedler-Ptak (8] characterization of Py which says that the matrix

M € R™™" N Py if and only if for every nonzero vector £ € R™ there exists an index
k € {1,...,n} such that z; # 0 and z,(Mz), > 0.

We note the following facts.
(i) Positive semi-definite matrices are sufficient, but not necessarily adequate.
(1) Row (column) adequate matrices are row (column) sufficient.

(1) There are row (column) sufficient matrices which are neither positive semi-definite

nor row (column) adequate.

(iv) Every principal submatrix of a row (column) sufficient matrix is row (column) suffi-

cient.




4. The Role of Row Sufficiency.

In Section 2, we saw (Lemma 1) that when the quadratic program (1) associated with
the LCP (q, M) is feasible, there must exist a Karush-Kuhn-Tucker pair (2*,u") such that
MT reverses the sign of z* — u*. We now link this fact with the property of row sufficiency
of the matrix M.

Theorem 4. Let M € R**". The following two statements are equivalent:
(a) M is row sufficient.

(b) For each vector ¢ € R™, if (z°,u") is a Karush-Kuhn-Tucker pair of the quadratic
program (1), then 2* solves the LCP (¢, M).

Proof. (a) = (b). Effectively, it was shown in Lemma 1 that z* — u* € rev hyyr. When M
is row sufficient, z* — u® € ker hygr. Thus, foralli =1,...,n,

Mz = ut)]i = (M= - u))i.
Combining this with (4), (8) and (9), we deduce that

2/ (g+ Mz2")i=0 foralli:=1,...,n.
It now follows that z* solves (g, M).

(b) = (a). Suppose M is not row sufficient. Then there exists a vector z € rev hyr
such that z,(MTr); < 0 for some j. Without loss of generality, we may assume z; > 0.
We now use the vector z to develop a contradiction to (b). To this end, let 2* = z+,u” =
™, and ¢ = —Mz"+(MTz)". It is then easy to show that (z*, u*) is a Karush-Kuhn-Tucker
pair for the quadratic program (1) defined by the given M and the constructed q. We now
obtain a contradiction. By construction, z; > 0 and (¢ + Mz*); > 0, yet according to (b),
the vector z* solves (¢, M). B

Remarks. This theorem has a some important implications.

1. Row sufficient matrices belong to the class Q, consisting of all real square matrices
M for which the feasibility of (¢, M) implies its solvability. Thus, we conclude that
row sufficient matrices belong to Py N Q, and that every LCP of this type can be
“processed” by Lemke’s algorithm [18). See Aganagi¢ and Cottle (2, p.230].
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~
“ 2. The row sufficiency property precisely delimits the class of matrices for which the
) analytic existence proof technique via K-K-T pairs of the quadratic program (1) will
. work. Thus, we have now answered the first question asked in Section 1.
L
N 3. The preceding remark and the existence of other matrix classes belonging to Q,
! ; lead one to speculate about the possibility of finding other analytic methods. The
-~ copositive-plus matrices introduced by Lemke [18] (see also Cottle and Dantzig [6])
, exemplify a familiar class of matrices that need not be row sufficient.
e
g 5. The Role of Column Sufficiency.
> In this section we address our question on the convexity of the solution set S(q, M) of
- an LCP (g, M). We begin with a preliminary theorem which is reminiscent of the Adler-
» Gale [1] characterization of the solution set of (¢, M) when M is positive semi-definite.
Much more general results were obtained by Jansen [16] who studied the structure of the
. solution set of an arbitrary LCP (¢, M). Jansen showed that S(q, M) is the finite union of
: polyhedral sets.
g
( Theorem 5. Let M € R**" and ¢ € R™ be given. The following statements are equiva-
! lent:
"
¥ (a) The solution set of (g, M) is polyhedral.
o
o (b) The solution set of (g, M) is convex.
:: (c) The equation
: (2)%q + M2?) = (:3)¥q + Mz') = 0 (12)
w
holds for any two solutions z! and 22 of (¢, M).
(d) There exist complementary index sets @ and & contained in {1,...,n} such that every
solution to (g, M) satisfies
Ja + Maaza = 09
- ds + Alaaza ._>. Os (13)
' za 20,
N
::: 25 = 0.
"
. Proof. {a) = (b). This is obvious as all polyhedral sets are convex.
o
y
“
N 8
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(b) = (c). Let z! and 2? be any two solutions of (g, M). By the convexity assumption,
the vector z = 72z' + (1 — 7)2? is also a solution for any r € (0,1). By letting w' =
g+ Mz (1 =1,2), we have

0=[rw' +(1-nwMrz! + (1 = 7)2% = r(1 — 7)[(w")T2? + (w?)T2!)
from which (12) follows.

(c) = (d). The desired index set is

a = {i:2 >0 for some z € S(¢q, M) }.

It follows that ¢ € & if and only if 2; = 0 for all z € S(q, M). Let z € S(q, M) be arbitrary.
It suffices to show that w, = ¢4 + MaaZa = 0. Now choose an arbitrary i € «. Then z; > 0
for some z € S(q,M). By (12), with 2! = z and 2? = 2, we deduce that w; = 0. Thus
w, = 0, and (d) follows.

(d) = (a). Let Z denote the solution set of (13). Then Z is clearly a polyhedral subset
of S(¢g, M). 1

Theorem 5 gives necessary and sufficient conditions for the convexity of S(q, M), but
only for the individual vector ¢. In the theorem below, we remove this restriction, thereby
obtaining a universal result in terms of M alone. The proof of the theorem is reminiscent
of Murty’s proof in [21] of the Samelson-Thrall-Wesler characterization of the class P.

Theorem 6. Let M € R**". The following two statements are equivalent:
(a) For each vector ¢ € R", the LCP (g, M) has a (possibly empty) convex solution set.
(b) M is column sufficient.

Proof. (a) = (b). Suppose M is not column sufficient. Then there exists a vector
r such that zi{(Mz); < 0 for all 1 = 1,...,n and z;(Mz); < O for some j. Now let
z! = z* and z? = z~. For brevity, let u* = (Mz)* and v~ = (Mz)~. Define the vector
g = ut—Mz*. Notice that ¢ = u~— Mz~ also. It is not difficult to verify that 2! and z? are
both solutions of (¢, M) with the so-defined g. Nevertheless, we have either z}(¢+Mz?); > 0
or z}(¢+ Mz'); > 0 depending on whether z; > 0 or z; < 0. This contradicts the convexity

of the solution set of (¢, M).

(b) = (a). Let ¢ € R™ be given. We may assume (g, M) has at least two solutions, for

otherwise there is nothing to prove. Let z! and 2? be two solutions of (¢, M) and define

9
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w* = g+ M2z* for k = 1,2. Then, for each i = 1,...,n, we have
02 (2! - 2%)i(w! - w')i = (2 - 2%[M(z' - 22)).. (14)

By the column sufficiency of M, the terms on the right-hand side of (14) must equal zero,
and hence equality must hold throughout. In particular, z!w? = z2?w! =0fori =1,...,n.
Since this is just a version of (12), the convexity follows.

A characterization of sufficient matrices can now be obtained by combining Theorems 4
and 6.

Corollary 7. Let M € R**". The following two statements are equivalent:

(a) For each ¢ € R™, the set of Karush-Kuhn-Tucker points of the quadratic program (1)
is convex and equal to S(q, M).

(b) M is sufficient.

Another way to look at the universal convexity question is through the geometry of
the complementary cones relative to M. Complementary cones were first introduced by
Samelson, Thrall and Wesler (23] and later studied in the LCP context by Murty {21]. To
carry out this part of the analysis, we recall two important definitions.

Definition. Let A € R**™. Then the positive cone spanned by A is the set
pos(A)={y:y= Az, 22>0}.

For any matrix A, pos(A) is a convex (finitely generated) cone. It is well known® that the

relative interior of pos(A) is precisely the set of all strictly positive linear combinations of
the columns of A. That is,

ri(pos(A))={y:y=A4z,2>0}. (15)

Deflnition. Let M € R"*" be given. For each a C {1,...,n} let Cy(a) denote the matrix
specified by
~M, fi€ea

I.;, otherwise

(Cum(a))ei = {

8See for example Rockafellar [22, Theorem 6.9).
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'!'o ~ Sets of the form pos (Chs(a)) are called complementary cones (relative to M). (For discus-
e sions of complementary cones relative to a single, fixed matrix, M, we simplify the notation
N by dropping the subscript AM.)

S
E The connection between complementary cones and the solvability of an LCP is well
I known: An LCP (g, M) has a solution if and only if ¢ € pos C(a) for some a. In general,
.\: two complementary cones C(a) and C(8) may be equal for distinct index sets a and 3.
f' :: Part of the following result asserts that this cannot be the case if S(q, M) is convex for
! '_. every q.
Theorem 8. Let M € R™™". The following two statements are equivalent.

2

22 (a) For each vector ¢ € R™, the LCP (¢, M) has a (possibly empty) convex solution set.

)

" (b) The distinctly generated complementary cones (relative to M) have disjoint relative
interiors; that is,

S ri(posC(a))Nri(pos(C(B)) =90 foralla, SC{1,...,n}, a#8.

o
' Proof. (a) = (b). Suppose there exist distinct index sets a and 8 such that

o

- ri (pos C(a)) Nri(pos( C(B)) # 9.

i
-r. Let U = C(a) and V = C(B). We may assume that there is an index k such that U, =
‘ I..and V., = ~M.,. Now let ¢ € ri(pos C(a)) Nri(pos( C(B)) be arbitrary. Then (as in
::: (15) above) there exist positive scalars A; and g, (i = 1,...,n) such that

” n n

"* qg= Z/\.'U.i = Z#.’V..‘-

o 1=1 =1
. Define 2!, w!, 22, and w? by the rules

() . .
:: Y . A 1Ea . 0 1€a

‘.i' 5 = : w, = .

' 0 i€a M\ 1E€Ea
' '

> ) pi t€B \ 0 1ep
‘N ¢ = . 5 w, = . S
(g 0 iep p, 1€

.
DN Thus, z!, 2% € S(q, M). But k € a N 3. Hence
A
‘;E (z")Tw? > zhw? = Aepx >0
y .-’ 11

N

e
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~ which contradicts Theorem 5.

: (b) = (a). Again, the proof is by contradiction. Suppose there exists a vector ¢ € R"
' such that S(g, M) is not polyhedral. Then there exist two solutions of (¢, M) for which (12)
X .:: is violated. The idea is now to use this information to construct a vector § that belongs to
. the relative interiors of two distinctly generated complementary cones.

] :: From the above, it follows that
E o n n
- g=Y A=Y mV.
i=1 i=1
wh where for some index k, we have U.x = I.x, V.o = =My, A\ > 0, and up > 0. Let
L)

y={i:U.;=V.;}. Then we can write

g=3 AU+ AU

""lﬁ €5 1€y
-j‘. =ZF-'V..' +ZﬂiU-i-
,3 i€y >

)
oy Next define the following index sets:

:':: 6l={ie:7:Ai>0’ “i=0}’

e

‘-:: 62={i€‘—7:’\i=0a “i>0}v

o

D) S3={i€7: =0, y; =0},
e s
::.‘. 4={i€7:X>0, u;>0}.
::j ! By its definition, k € 6, which is therefore nonempty. Now, using the two representations
X of ¢, define
l‘

B 4 q=4+ Z U0i+zvoi+EUoi

': » 1€6, U8, 1€62 1€y

1M,

» =Y AN+ + D Va+ 2 Ui+ 3 AU+ (L + 1)U,

v i€61 €62 i€by i€64 i€y

i~
ﬁ: = Z Ui+ Z(#.‘ + 1)V, + Z U.+ Z wVai+ z(#i + 1)U..

> €6 €62 i€sy €54 i€y

14 An examination of the index sets and the coefficients in these equations reveals that § has
» been represented as a vector belonging to the relative interiors of two distinctly generated
:; complementary cones, namely C(a) and C(8) where k € @ N 8, thereby making a # 5. B
o
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> 6. A Special Case.
: ‘ Generally speaking, the implication (11) through which column sufficiency is defined
e involves nonlinear inequalities and all vectors r € R". In this section, we consider linear
: complementarity problems (g, Af) in which the matrix M belongs to Z, the class of real
) square matrices with nonpositive off-diagonal elements. Much has been written about this
class of matrices in the LCP context and otherwise. See for instance (7] and the references

! therein. The main result of this section, Theorem 9, shows that if M is a Z-matrix, then
p the implication (11) can be restricted to only the nonnegative vectors z € R". In turn.
[/

¢ this restricted implication is equivalent to a finite set of linear inequality systems. The
" upshot of the theorem is that if M € Z, then the column sufficiency property of A and
::: the universal convexity of solution sets of the associated linear complementarity problems
R~ can be tested by a finite procedure.®

<

g

o Theorem 9. Let M be a Z-matrix of order n. The following four statements are equivalent.
_,; (a) For all ¢ € R", if (¢, M) is feasible, then S{¢, M) is polyhedral.

&
ZL (b) For all a C {1,...,n} the system

i~

- 0# My,z, <0, 7,>0 (16)
19

&

b has no solution.

. (¢) For all £ > 0, z € rev hys implies z € ker hyy.

'Y

" (d) The matrix M is column sufficient.

Wy

P Proof. (a) = (b). Suppose (b) is false, i.e., that for some a, (16) has a solution z,. We
B shall now construct a solvable LCP (g, M) for which S(q, M) is not polyhedral. Indeed,
E:a define a nonnegative vector ¢ so that ¢, = —M,,%, and ¢z > —Ms.%,. Now define Z so
Cd . .

" that z, = Z, and 25 = 0. Then Z € S(q, M). Since q > 0, it follows that 0 € S(¢, M ). But
K]

q zT(g + M0) > 0, for 7, > 0 and 0 # g, > 0. We now have a contradiction, for by Theorem
. 5, S(g, M) must not be polyhedral.

o

N

o (b) = (c). If the nonnegative vector £ belongs to rev hyy and not to ker hp, then Z must
o be nonzero. It follows that a = {i : #; > 0} is nonempty and &, is a solution of (16) in
v contradiction to the hypothesis.

)

‘: 5The transpose of a Z-matrix is, of course, a Z-matrix. Hence, in this case, row sufficiency is also finitely
: testable.

g 13
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._n. (¢) = (d). Assume % € rev hy. Using the Z-property of M, we can show that

7

;3 Z(Mz); 2 |Z|(M)E]); foralli=1,...,n

| '\.'.r'

;,:'\" where |Z| denotes the vector whose i-th component is |Z;|. Thus, |Z| belongs to rev hy,, and

: S since |Z| > 0, it follows from (c) that |Z| € ker hps. Accordingly, we have

\ o)

_.::- 0> #,(Mz); > |#|(M|Z])i =0 foralli=1,...,n

=~

. Hence Z € ker hyy, as required.

~, (d) = (a). This is immediate from Theorems 5 and 6. B

>

ro

- Example. We have observed that row and column sufficient matrices belong to P,. We
-

! X might then inquire whether the converse holds for Z-matrices. Does M € Z N Pg imply

C that M is sufficient? (Since M € Z N Py if and only if MT € Z N Py, there is no point in

‘C\ asking about row or column sufficiency separately.) The answer is “no,” for the Z-matrix

b

v

@

u[y )

VN Ml WX

._$ has nonnegative principal minors, and the vector zT = (1, 2) belongs to rev has\ker hps. The
::',: same vector with a = {1, 2} gives a solution to (16), showing that condition (b) of Theorem
‘-j:: 9 is not satisfied. For results on linear complementarity problems with M € Z N Py, see
‘ Mohan [19], [20).

E Linear complementarity problems with Z-matrices are known.to have two particularly
. 3:: interesting features. First, they belong to the class Q,. Thus, whenever the polyhedral
: set F(q, M) is nonempty, then so is S(g, M). Second, when F(gq, M) is nonempty, S(q, M)

contains a vector z* such that z* < 2 for every z € F(q,M). The vector z* is called the

least element of F(q,M). It is clear that such a vector must be unique. Thus, a feasible

linear complementarity problem with a Z-matrix has a unique least-element solution. set.

ZIL 7S

o. As a concluding result, we show that the least-element solution provides an interesting
"y structural property of the solution set of a linear complementarity problem (g, M) in which
) M is a Z-matrix.
*
a2 Theorem 10. Let M € Z and assume that F(q,M) # 0. Let w* = q + M2z* where 2" is
-:‘. the least-element solution of (¢, M). Then
..:
:::: z€ S(g,M) < z-2"€ S(w",M).
it 14
0.
::'S
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Proof. Let z € S(q, M). Then £ = z — z* > 0. Since z € 5(q, M), we have
w'+ME=q+ M2+ M{=q+ Mz2>0.
Moreover,
0<€ENw" +Mé) =(z-2)g+Mz)=—(2")(g+ Mz) <0,
This implies £T(w* + M¢) = 0 and hence that £ € S(w*, M).

Conversely, let £ € S(w*,M). Then z = 2* + £ 2 0, and
g+ Mz=q+M2*+ME{=w"+ M{2>0.
It follows from the definitions that
2T(g + Mz) = (2" + €)T(w" + M¢) = (27)T(w" + M¢). (17)

Now if (w* + M¢); > 0, then £ = 0 because § € S(w*, M). This implies (M¢); < 0 since
M € Z and z > 0. Combining these observations, we note that w; > 0 and hence z; = 0.
Accordingly, we deduce that (z*)T(w* + M€) = 0, which by equation (17) implies that
ze S(w,M). 1

Remark. Theorem 10 says that S(q, M) = z* + S(w*, M). This is noteworthy for two
reasons. First, S(w", M) is the solution set of a problem based upon an LCP in which the
constant column is a nonnegative vector. Second, the solution set S(q, M) is a translate (by
z*) of another solution set, S(w*, M). Hence S(g, M) is polyhedral if and only if S(w*, M)
is polyhedral.

Acknowledgment. The authors would like to thank R.D. Doverspike, C.D. Ha, and R.E.

Stone for many helpful discussions.
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